STUDENT REVIEW PACKET

Part I

Molar Mass

Find the molar mass of each of the following. Show all work:

- N_2
- 2) H₂O
- 3) NaCl
- 4) Na₃PO₄
- 5) Au
- 6) $(NH_4)_2CO_3$

Percent Composition

Determine the percent composition for each of the following. Show all work:

- SO_2
- 2) NaCl
- H_2SO_4
- 4) K_2S
- 5) $C_6H_{12}O_6$

STOICHIOMETRY REVIEW

Convert the following. Show all work. Be sure to show the correct number of significant figures and units in your responses.

- 1. 25.0 g NaOH to moles NaOH
- 2. 0.67 moles H_3PO_4 to g H_3PO_4
- 3. $12.8 \text{ moles SO}_2 \text{ to L SO}_2$
- 4. 0.0065 moles CO_2 to L CO_2
- 5. 1.23 moles NH₃ to molecules NH₃
- 6. 6.8×10^{27} molecules KOH to moles KOH
- 7. 90.0 g LiCl to moles LiCl
- 8. $1.7 \text{ moles } F_2 \text{ to atoms } F_2$
- 9. 5.23×10^{24} atoms Cu to moles Cu
- 10. 22.4 mole C₂H₂ to molecules C₂H₂

Convert the following. Show all work. Be sure to show the correct number of significant figures and units in your responses.

- 1. How many molecules of H_2O are in 50.0 g H_2O ?
- 2. Find the volume of CO_2 in 100.0 g CO_2 .
- 3. A sample of diamond has a mass of 0.35 g. How many carbon atoms does it contain? (You may assume that the diamond is pure carbon.)
- 4. A typical helium tank contains 250.0 L of He. How many atoms is this?
- 5. How many grams does 7.12 x 10²⁸ molecules of K₂CO₃ weigh?

Part II

- 1. What information is derived from the coefficients in a balanced equation?
- 3. In a chemical reaction, some items are always conserved while others may be conserved but are not necessarily conserved. Complete the table below by indicating <u>Always</u> <u>Conserved</u> OR <u>Sometimes Conserved</u> for each item. Use the balanced equation in question above to justify your answer.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

SUMMARY OF ITEMS CONSERVED IN A CHEMICAL REACTION

ITEM	Always Conserved OR Sometimes Conserved	Justification
Atoms		
Molecules		
Moles		
Volume		

4. Which of these is the mole ratio used to convert grams of oxygen to grams of water in question above?

- b) <u>1</u> 2
- c) <u>2</u> 1
- d) <u>18.02</u>
- 6. Balance each equation.

a)
$$\underline{\hspace{0.5cm}}$$
 H₂ + $\underline{\hspace{0.5cm}}$ Fe₃O₄ \rightarrow $\underline{\hspace{0.5cm}}$ Fe + $\underline{\hspace{0.5cm}}$ H₂O

b)
$$__Al(OH)_3 \rightarrow __Al_2O_3 + __H_2O$$

c)
$$\underline{\hspace{1cm}} P_2O_5 + \underline{\hspace{1cm}} H_2O \rightarrow \underline{\hspace{1cm}} H_3PO_4$$

d)
$$\underline{\hspace{1cm}}$$
 Na + $\underline{\hspace{1cm}}$ H₂O \rightarrow $\underline{\hspace{1cm}}$ NaOH + $\underline{\hspace{1cm}}$ H₂

e)
$$\underline{\hspace{0.5cm}}$$
 Pb(NO₃)₂ + $\underline{\hspace{0.5cm}}$ NaI \rightarrow $\underline{\hspace{0.5cm}}$ PbI₂ + $\underline{\hspace{0.5cm}}$ NaNO₃

$$f) \quad \underline{\hspace{0.5cm}} Ag_2SO_4 \quad + \ \underline{\hspace{0.5cm}} AlCl_3 \quad \rightarrow \ \underline{\hspace{0.5cm}} AgCl \quad + \ \underline{\hspace{0.5cm}} Al_2(SO_4)_3$$

g)
$$\underline{\hspace{0.4cm}}$$
 C₂H₂ + $\underline{\hspace{0.4cm}}$ O₂ \rightarrow $\underline{\hspace{0.4cm}}$ CO₂ + $\underline{\hspace{0.4cm}}$ H₂O

7. Determine the molar mass of each compound.

C₆H₁₂O₆ - _____

Ca₃(PO₄)₂ - _____

(NH4)₂SO₄ - _____

Directions: Use dimensional analysis or an acceptable Problem Solving Format. Be sure to include units, and report your answer to the correct number of significant figures.

8. Carbon disulfide is an important industrial solvent. It is prepared by the reaction of coke (carbon) with sulfur dioxide.

$$5C(s) + 2SO_2(g) \rightarrow CS_2(l) + 4CO(g)$$

• How many moles of carbon are needed to react with 5.44 moles of SO₂?

• How many moles of carbon monoxide form at the same time as 0.246 moles of CS₂ form?

• How many moles of SO₂ are required to make 118 moles of CS₂?

9. Lithium nitride reacts with water to form ammonia and aqueous lithium hydroxide.

$$Li_3N(s) + 3H_2O(l) \rightarrow NH_3(g) + 3LiOH(aq)$$

- What mass of water is needed to react with 32.9g Li₃N?
- When the above reaction takes place, how many molecules of NH₃ are produced?

10. The reaction of iron(III) oxide with carbon monoxide produces iron and carbon dioxide.

 $\underline{\hspace{1cm}} \operatorname{Fe}_2\operatorname{O}_3(s) + \underline{\hspace{1cm}} \operatorname{CO}(g) \rightarrow \underline{\hspace{1cm}} \operatorname{Fe}(s) + \underline{\hspace{1cm}} \operatorname{CO}_2(g)$

- Balance the skeleton equation.
- If you have 39.5g Fe₂O₃, how many grams of CO are required for complete reaction?

• How many grams of Fe₂O₃ are required to produce 4.65 g Fe?

• How many grams of iron can be produced from 145 g Fe₂O₃?

• When 67.8 g Fe₂O₃ reacts with an excess of CO, 44.1 g Fe is produced. What is the percent yield?

11. The complete combustion of octane, C_8H_{18} , in the presence of oxygen produces carbon dioxide and water.

- Balance the skeleton equation for the complete combustion of octane.
- What volume of CO₂ gas is released when 7.40 moles of octane react with excess oxygen at STP?
- What volume of oxygen gas is needed to react completely with 43.4 g octane?
- 12. Heating an ore of antimony, Sb₂S₃, in the presence of excess iron ore gives the element antimony, Sb, and iron(II) sulfide.

heat
Sb₂S₃(s) + 3Fe(s)
$$\rightarrow$$
 2Sb(s) + 3FeS(s)

The following data was recorded when the reaction was carried out in the laboratory.

DATA TABLE

Constant mass of evaporating dish	45.50 g
Mass of evaporating dish and Sb ₂ S ₃	60.50 g
Mass of Sb ₂ S ₃	
Mass of evaporating dish and Sb – First heating	55.42 g
Mass of evaporating dish and Sb – Second heating	55.34 g
Constant mass of evaporating dish and Sb	55.34 g
Mass of Sb	

- a) Complete the Data Table by filling in the mass of Sb_2S_3 used in the reaction and the mass of Sb formed as the result of the reaction.
- b) Calculate the percent yield of antimony, Sb, in this reaction.

STOICHIOMETRY REVIEW

13.	List at least three (3) reasons why the percent yield of a product is usually 1 100%.	ess than
	•	
	•	
	•	
	•	
	•	

14. Describe a *real world* example of percent yield by applying the concept to a discipline other than chemistry. Be sure to include these terms in your answer: *actual yield, predicted or theoretical yield, and percent yield.*