STUDENT REVIEW PACKET

Part I

Molar Mass
Find the molar mass of each of the following. Show all work:

1) N_{2}
2) $\mathrm{H}_{2} \mathrm{O}$
3) NaCl
4) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
5) Au
6) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Percent Composition

Determine the percent composition for each of the following. Show all work:

1) SO_{2}
2) NaCl
3) $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$
4) $\mathrm{K}_{2} \mathrm{~S}$
5) $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Convert the following. Show all work. Be sure to show the correct number of significant figures and units in your responses.

1. $\quad 25.0 \mathrm{~g} \mathrm{NaOH}$ to moles NaOH
2. 0.67 moles $\mathrm{H}_{3} \mathrm{PO}_{4}$ to $\mathrm{g} \mathrm{H}_{3} \mathrm{PO}_{4}$
3. 12.8 moles SO_{2} to $\mathrm{L} \mathrm{SO}_{2}$
4. 0.0065 moles CO_{2} to $\mathrm{L} \mathrm{CO}_{2}$
5. 1.23 moles NH_{3} to molecules NH_{3}
6. $\quad 6.8 \times 10^{27}$ molecules KOH to moles KOH
7. $\quad 90.0 \mathrm{~g} \mathrm{LiCl}$ to moles LiCl
8. $\quad 1.7$ moles F_{2} to atoms F_{2}
9. 5.23×10^{24} atoms Cu to moles Cu
10. 22.4 mole $\mathrm{C}_{2} \mathrm{H}_{2}$ to molecules $\mathrm{C}_{2} \mathrm{H}_{2}$

Convert the following. Show all work. Be sure to show the correct number of significant figures and units in your responses.

1. How many molecules of $\mathrm{H}_{2} \mathrm{O}$ are in $50.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?
2. Find the volume of CO_{2} in $100.0 \mathrm{~g} \mathrm{CO}_{2}$.
3. A sample of diamond has a mass of 0.35 g . How many carbon atoms does it contain? (You may assume that the diamond is pure carbon.)
4. A typical helium tank contains 250.0 L of He. How many atoms is this?
5. How many grams does 7.12×10^{28} molecules of $\mathrm{K}_{2} \mathrm{CO}_{3}$ weigh?

Part II

1. What information is derived from the coefficients in a balanced equation?
2. In a chemical reaction, some items are always conserved while others may be conserved but are not necessarily conserved. Complete the table below by indicating Always Conserved OR Sometimes Conserved for each item. Use the balanced equation in question above to justify your answer.

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

SUMMARY OF ITEMS CONSERVED IN A CHEMICAL REACTION

ITEM	Always Conserved OR Sometimes Conserved	Justification
Atoms		
Molecules		
Moles		
Volume		

4. Which of these is the mole ratio used to convert grams of oxygen to grams of water in question above?
a) $\frac{1}{16.0}$
b) $\frac{1}{2}$
c) $\frac{2}{1}$
d) $\frac{18.02}{1}$
5. Balance each equation.
a) $__{-} \mathrm{H}_{2}+\ldots \mathrm{Fe}_{3} \mathrm{O}_{4} \rightarrow \ldots \mathrm{Fe}+\ldots \mathrm{H}_{2} \mathrm{O}$
b) __ $\mathrm{Al}(\mathrm{OH})_{3} \rightarrow \ldots \mathrm{Al}_{2} \mathrm{O}_{3}+\ldots \mathrm{H}_{2} \mathrm{O}$
c) $_ـ_{2} \mathrm{P}_{2} \mathrm{O}_{5}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{H}_{3} \mathrm{PO}_{4}$
d) $__\mathrm{Na}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{NaOH}+\ldots \mathrm{H}_{2}$
e) $\ldots \ldots \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \ldots \mathrm{NaI} \rightarrow \ldots \mathrm{PbI}_{2}+\ldots \mathrm{NaNO}_{3}$
f) $\ldots \mathrm{Ag}_{2} \mathrm{SO}_{4}+\ldots \mathrm{AlCl}_{3} \rightarrow \ldots \ldots \mathrm{AgCl}+\ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
g) $\ldots \mathrm{C}_{2} \mathrm{H}_{2}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
6. Determine the molar mass of each compound.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ - \qquad
$\mathrm{Ca} 3\left(\mathrm{PO}_{4}\right)_{2}-$ \qquad
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ - \qquad

Directions: Use dimensional analysis or an acceptable Problem Solving Format. Be sure to include units, and report your answer to the correct number of significant figures.
8. Carbon disulfide is an important industrial solvent. It is prepared by the reaction of coke (carbon) with sulfur dioxide.

$$
5 \mathrm{C}(s)+2 \mathrm{SO}_{2}(g) \rightarrow \mathrm{CS}_{2}(l)+4 \mathrm{CO}(g)
$$

- How many moles of carbon are needed to react with 5.44 moles of SO_{2} ?
- How many moles of carbon monoxide form at the same time as 0.246 moles of CS_{2} form?
- How many moles of SO_{2} are required to make 118 moles of CS_{2} ?

9. Lithium nitride reacts with water to form ammonia and aqueous lithium hydroxide.
$\mathrm{Li}_{3} \mathrm{~N}(s)+\mathbf{3 H}_{2} \mathrm{O}(l) \rightarrow \mathrm{NH}_{3}(g)+3 \mathrm{LiOH}(a q)$

- What mass of water is needed to react with 32.9 g Li 3 N ?
- When the above reaction takes place, how many molecules of NH_{3} are produced?

10. The reaction of iron(III) oxide with carbon monoxide produces iron and carbon dioxide.

$$
\ldots \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+\ldots \ldots \mathrm{CO}(g) \rightarrow \ldots \mathrm{Fe}(s)+\ldots \mathrm{CO}_{2}(g)
$$

- Balance the skeleton equation.
- If you have $39.5 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$, how many grams of CO are required for complete reaction?
- How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are required to produce 4.65 g Fe ?
- How many grams of iron can be produced from $145 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$?
- When $67.8 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$ reacts with an excess of $\mathrm{CO}, 44.1 \mathrm{~g} \mathrm{Fe}$ is produced. What is the percent yield?

11. The complete combustion of octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, in the presence of oxygen produces carbon dioxide and water.
heat
$\ldots \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Balance the skeleton equation for the complete combustion of octane.
- What volume of CO_{2} gas is released when 7.40 moles of octane react with excess oxygen at STP?
- What volume of oxygen gas is needed to react completely with 43.4 g octane?

12. Heating an ore of antimony, $\mathbf{S b}_{2} \mathbf{S}_{3}$, in the presence of excess iron ore gives the element antimony, $\mathbf{S b}$, and iron(II) sulfide.

$$
\mathrm{Sb}_{2} \mathrm{~S}_{3}(s)+3 \mathrm{Fe}(s) \stackrel{\text { heat }}{\rightarrow} 2 \mathrm{Sb}(s)+3 \mathrm{FeS}(s)
$$

The following data was recorded when the reaction was carried out in the laboratory.
DATA TABLE

Constant mass of evaporating dish	45.50 g
Mass of evaporating dish and $\mathbf{S b}_{2} \mathbf{S}_{\mathbf{3}}$	$\mathbf{6 0 . 5 0} \mathbf{g}$
Mass of $\mathbf{S b}_{2} \mathbf{S}_{\mathbf{3}}$	
Mass of evaporating dish and $\mathbf{S b}-$ First heating	55.42 g
Mass of evaporating dish and $\mathbf{S b}-$ Second heating	55.34 g
Constant mass of evaporating dish and $\mathbf{S b}$	55.34 g
Mass of $\mathbf{S b}$	

a) Complete the Data Table by filling in the mass of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ used in the reaction and the mass of Sb formed as the result of the reaction.
b) Calculate the percent yield of antimony, Sb , in this reaction.
13. List at least three (3) reasons why the percent yield of a product is usually less than 100\%.

- \qquad
-
-
-
-

14. Describe a real world example of percent yield by applying the concept to a discipline other than chemistry. Be sure to include these terms in your answer: actual yield, predicted or theoretical yield, and percent yield.
