Which of these is the formula for disulfur heptoxide?

A. $\mathrm{S}_{2} \mathrm{O}_{7}$
 B. $\mathrm{S}_{7} \mathrm{O}_{2}$
 C. SO_{2}
 D. $\mathrm{N}_{2} \mathrm{O}$

Which of these is the correct chemical formula for a molecule of oxygen?

A. 0
B. 0^{-2}
C. 0^{+2}
D. $\mathrm{O}_{2} \leftarrow$

Which of these is the correct name for BF_{3} ?
A. Boron fluoride
B. Boron trifluorate
C. Boron perfluorate
D. Boron trifluoride $<$

Which of these is the correct name of the molecular compound, $\mathrm{Cr}_{2} \mathrm{O}_{7}$?
A. Dichromate
B. Monochromium tetroxide
C. Dichromium heptoxide
D. Dichromium oxide

Which of these is the charge on the ion formed when sulfur gains 2 electrons?

$$
\begin{aligned}
& \text { A. }+2 \\
& \text { B. }-2 \\
& \text { C. }+3 \\
& \text { D. }-3
\end{aligned}
$$

How many oxysen atoms are represented in $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?

A. 1
B. 4
C. $8 \leftarrow$
D. 12

Which of these salts is formed from the lons, Li^{+}and $\mathrm{SO}_{4}{ }^{2-}$?

A. LiSO_{4}
B. $\mathrm{LH}_{2} \mathrm{SO}_{4} \leftarrow$
C. $\mathrm{LH}\left(\mathrm{SO}_{4}\right)_{2}$
D. $\mathrm{L}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

What is the oxidation number of the Fe atom in $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?

$$
\begin{aligned}
& \text { A. }-2 \\
& \text { B. }+2 \\
& \text { C. }+3 \\
& \text { D. }-3
\end{aligned}
$$

Which of these is the formula for aluminum phosphide?

A. AlP \leftarrow B. $\mathrm{Al}_{2} \mathrm{P}_{3}$ C. $\mathrm{Al}_{3} \mathrm{P}_{2}$
D. $\mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{3}$

Which of these is the formula for calcium nitride?

A. GaN
B. $\mathrm{Ca}_{2} \mathrm{~N}_{3}$
C. $\mathrm{Ca}_{3} \mathrm{~N}_{2} \leftarrow$
D. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

Which of these is true of a balanced equation?
A. The total number of atoms changes.
B. The kinds of molecules remain the same.
C. The total number of molecules remains the same.
D. The number of atoms of each element remains the same.

What are the coefficients for the following equation?

$\ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{KOH} \rightarrow$ __Al(OH) ${ }_{3}+\ldots \mathrm{K}_{2} \mathrm{SO}_{4}$

A. $1,3,2,3$
B. 1, 6, 2, 3
C. 2, 12, 4, 6
D. $4,6,2,3$

What is the coefficient for MgCl_{2} when the equation is balanced?

$$
\ldots \mathrm{Mg}^{+} \ldots \ldots \mathrm{HCl} \rightarrow \text { _ }^{\mathrm{MgCl}}{ }_{2}+\ldots \mathrm{H}_{2}
$$

A. $1 \leftarrow$
B. 2
C. 3
D. 6

Potassium metal reacts with water to form potassium hydroxide and hydrogen gas

Which of these chemical equations best represents the word equation?
A. $\mathrm{K}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KOH}+2 \mathrm{H}$ B. $\mathrm{K}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KO}+\mathrm{H}_{\mathbf{2}}$ C. $\mathrm{K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{K}(\mathrm{OH})_{2}+\mathrm{H}_{2}$ D. $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$

Potassium chlorate decomposes to form potassium chloride and oxygen. Which of these is the balanced equation

A. $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$ B. $\mathrm{KClO}_{3} \rightarrow \mathrm{KCl}+0$ C. $2 \mathrm{KClO}_{3} \rightarrow \mathrm{KCl}_{2}+\mathrm{O}_{2}$ D. $3 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+\mathbf{4 0} \mathbf{O}_{2}$

What type of reaction is shown below?

A. Combination on C. Single replacement
D. Double replacement

The following equation is an example of which type of reaction?

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

A. Combination
B. Decomposition
G. Single Replacement
D. Double Replacement

Which of these reactants is common to all combustion reactions?

A. CO_{2}
B. H_{2}
C. $\mathrm{O}_{2} \leftarrow$
D. $\mathrm{H}_{2} \mathrm{O}$

Determine the coefficient and

 formula of the missing product for the complete combustion of$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 9 \mathrm{CO}_{2}+?
$$

A. $2 \mathrm{H}_{2}$
B. O_{2}
C. $2 \mathrm{H}_{2} \mathrm{O}$
D. $10 \mathrm{H}_{2} \mathrm{O} \longleftarrow$

What are the correct formulas and coefficients for the products of this double replacement reaction?

$$
2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow
$$

A. $\mathrm{K}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{KSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
D. $3 \mathrm{KSO}_{4}+\mathbf{4 H}_{\mathbf{2}} \mathrm{O}$

A strip of copper metal is added to a solution containing a compound of each metal. Which of these metals would copper displace?

Activity of Metals	
Potassium Calcium Magnesium Tin Lead Copper	

A. Lead only
B. Potassium, calcium, and magnesium
C. All the metals except copper
D. None of the metals

A metal is added to a solution containing compounds of potassium and magnesium. Which of these metals would replace magnesium but not potassium?

Activity of Metals	
Potassium Calcium Magnesium Tin Lead Copper	

B. Copper
C. Tin or lead or copper
D. None of the listed metals would produce the desired effect

What must be true in order for the following reaction to occur?

$$
\mathrm{3K}+\mathrm{AlCl}_{3} \rightarrow 3 \mathrm{KCl}+\mathrm{Al}
$$

A. Al must be above CI on the activity series.
B. K must be above Al on the activity series
C. Al must be above K on the activity series.
D. K must be above CI on the activity series.

What must be true in order for the following reaction to occur?

$2 \mathrm{Na}+\mathrm{ZnCl}_{2} \rightarrow 2 \mathrm{NaCl}+\mathrm{Zn}$

A. Zn must be above CI on the activity series.
B. Na must be above CI on the activity series
C. Na must be above Zn on the activity series.
D. Zn must be above Na on the activity series.

$$
\left(\begin{array}{l}
\mathrm{Zn}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Cu} \\
\mathrm{Zn}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Pb} \\
\mathrm{Zn}+\mathrm{NaNO}_{3} \rightarrow \mathrm{No} \text { Reaction } \\
\mathrm{Pb}+\mathbf{C u}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathbf{P b}\left(\mathrm{NO}_{3}\right)_{2}+\mathbf{C u}
\end{array}\right.
$$

Which of these ranks the metals from least reactive to most reactive?
A. $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Na} \leftarrow$ B. $\mathrm{Pb}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Na}$
C. $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Na}, \mathrm{Zn}$
D. $\mathrm{Na}, \mathrm{Zn}, \mathrm{Pb}, \mathrm{Gu}$

What is the most Hkely charge on an ion of nitrogen?

A. -5
B. $-3<$
C. +3
D. +5

What is the coefficient and symbol for potassium iodide?

bromine + potassium iodide \rightarrow potassium bromide + iodine
A. $2 \mathrm{KI}^{-}$
B. $2 \mathrm{KI}_{2}$
C. 2 KI
D. K_{2}

A chemist places a piece of zinc in a solution of lead(II) nitrate and notices pleces of lead drop out of solution.

What type of reaction has taken place?
A. Combination
B. Decomposition
C. Single replacement
D. Double replacement

What are the coefficients for the following equation?
$\ldots \mathrm{C}_{4} \mathrm{H}_{10}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
A. $1,6,4,5$
B. $1,6.5,4,5$
C. $2,13,8,10 \longleftarrow$
D. 2, 12, 8, 10

What is the coefficient for $\mathbf{O}_{\mathbf{2}}$ when the equation is balanced?

$\ldots_{10} \mathrm{H}_{22}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
A. 15
B. 16
C. 30
D. $31 \longleftarrow$

Activity Series

 8$$
\begin{aligned}
& \text { Balancing } \\
& \text { Equations }
\end{aligned}
$$

A chemist places a piece of magnesium in copper (I) sulfate and notices pieces of copper drop out of solution.

- Write a balanced equation, predict the products, and identify the type of reaction.
- Explain why this type of reaction occurs

Be sure to include:
a) The written and balanced chemical equation
b) The type of reaction
c) Justification for the reaction type and why the reaction occurs

a) The written and balanced chemical equation

$\mathrm{Mg}+\mathrm{Cu}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+2 \mathrm{Cu}$

b) The type of reaction

Single replacement reaction

C. Justification for the reaction type and why the reaction occurs

Magnesium is more active than copper, so it has higher tendency to donate its electrons to copper. This causes copper to accept the electrons and come out of solution as a solid and for magnesium to enter the solution as an ion.

